

Triple Award

You will have to learn each of the following equations off by heart for each examination paper, and know when and how to use them.

Equations required for the Higher Tier papers only are marked with the symbol **HT**.

Avogadro's number (HT)

There are 6.02×10^{23} particles of a substance in 1 mole.

The mole (HT)

moles = $\frac{\text{mass}}{\text{M}_r}$ (relative atomic mass)

Concentration in g/dm³

Concentration in mol/dm³ (HT)

 $\frac{\text{concentration} = \underline{\text{mass (g)}}}{\text{volume (dm}^3)}$

concentration = $\frac{\text{moles (mol)}}{\text{volume (dm}^3)}$

OR

moles = concentration x volume (in dm³)

Gas Volumes (HT)

1 mole of any gas has a volume of 24dm³ volume (dm³) = moles x 24dm³

Converting from cm³ to dm³

 $1dm^3 = 1000cm^3$

Triple Award

Percentage Yield (HT)

Mass of product actually made × 100

Maximum theoretical mass of product

Atom Economy

Relative formula mass of desired product from equation × 100 Sum of relative formula masses of all reactants from equation

Calculating energy changes (HT)

Energy change in a reaction = Total energy needed to - Total energy released when break the bonds bonds in the products in reactants are formed

Rate of reaction

mean rate of reaction = quantity of reactant used time taken
mean rate of reaction = quantity of product formed time taken

(Quantity usually measured as a mass or volume)

Chromatography

 $R_f = \frac{\text{distance moved by substance}}{\text{distance moved by solvent}}$

Common Reactions you should be familiar with:

This list should help you to identify most the reactions that you will be expected to know about for the examination.

Note: this is not an exhaustive list, for example I have used examples of metals or acids which may be substituted for other metals or acids.

Combustion of carbon

Carbon + Oxygen

 $C_{(s)} + O_{2(q)}$

 \longrightarrow

Carbon dioxide

-

CO_{2(g)}

Combustion of hydrogen

Hydrogen + Oxygen

 \longrightarrow

Water

 $2H_{2(g)} + O_{2(g)}$

 \longrightarrow

2H₂O_(g)

Combustion of hydrocarbons

Methane + Oxygen

 \longrightarrow

Carbon dioxide + Water

 $CH_4 + O_2$

 \longrightarrow

 $CO_2 + H_2O$

Oxidation of metals

Copper + Oxygen

 \longrightarrow

Copper (II) oxide

 $2Cu_{(s)} + O_{2(g)}$

 \longrightarrow

 $2CuO_{(s)}$

Reaction of metals with water

Sodium + Water

 \longrightarrow

Sodium hydroxide + Hydrogen

 $2Na_{(s)} + 2H_2O_{(l)}$

 \longrightarrow

Displacement of halogens

Sodium bromide + Chlorine $2NaBr_{(aq)} + Cl_{2(aq)}$

$$\longrightarrow$$

Bromine + Sodium chloride

$$\rightarrow$$
 Br_{2(aq)} + 2NaCl_(aq)

Reaction of metal with acid

 $\begin{aligned} & \text{Magnesium + Hydrochloric acid} \\ & \text{Mg}_{\text{(s)}} + 2 \text{HCI}_{\text{(aq)}} \end{aligned}$

Magnesium chloride + Hydrogen

$$\mathsf{MgCl}_{\mathsf{2(aq)}} + \mathsf{H}_{\mathsf{2(g)}}$$

Reaction of metal oxide with acid

Copper (II) oxide + Hydrochloric acid $CuO_{(s)} + 2HCI_{(aq)}$

Copper (II) chloride + Water $CuCl_{2(aq)} + H_2O_{(1)}$

Displacement of metals

Copper (II) sulfate + Magnesium $CuSO_{4(aq)} + Mg_{(s)}$

 \longrightarrow

Magnesium sulfate + Copper

 $MgSO_{4(aq)} + Cu_{(s)}$

(HT) Ionic equation for displacement

$$Cu^{2+}_{(aq)} + Mg_{(s)}$$

 $Mg^{2+}_{(aq)} + Cu_{(s)}$

Neutralisation

Sodium hydroxide + Hydrochloric acid $NaOH_{(aq)} + HCl_{(aq)}$

 \longrightarrow

Sodium chloride + Water

$$\rightarrow$$
 NaCl_(aq) + H₂O_(I)

(HT) Ionic equation for neutralisation

$$H^{+}_{(aq)} + OH^{-}_{(aq)}$$

 \longrightarrow

 $H_{2}O_{(1)}$

Marble chips (calcium carbonate) and acid

Calcium carbonate + Hydrochloric acid $CaCO_{3(s)}$ + $2HCI_{(ad)}$

 \longrightarrow

Calcium chloride + Water + Carbon dioxide $CaCl_{2(a0)} + H_2O_{(1)} + CO_{2(a)}$

Electrolysis of molten ionic compounds

Lead bromide

$$\longrightarrow$$

$$\longrightarrow$$

$$Pb_{(I)} + Br_{2(g)}$$

Electrolysis of aqueous ionic compounds (sodium chloride)

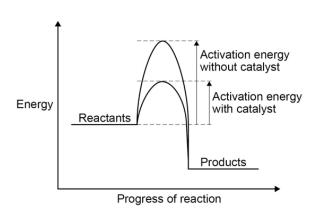
Sodium chloride + Water

$$\longrightarrow$$

$$NaCl_{(aq)} + H_2O_{(1)}$$

$$\longrightarrow$$

$$NaOH_{(aq)} + H_{2(g)} + CI_{2(g)}$$


(HT) Half equations for electrolysis

$$2H^{+}_{(aq)} + 2e^{-}$$

$$H_{2(g)}$$
 $Cl_{2(g)} + 2e^{-}$

Energy changes - reaction profile diagrams

Cracking

Decane $C_{10}H_{22}$

$$\longrightarrow$$

Pentene + Pentane
$$C_5H_{10} + C_5H_{12}$$

Triple Award

Bromine test for alkenes

Ethene + Bromine

$$C_2H_4 + Br_2$$

 $N_{2(g)}$

$$\rightarrow$$

Dibromoethane

The Haber process

Nitrogen + Hydrogen

+ 3H_{2(g)}

 \longleftrightarrow

Ammonia

$$2NH_{3(g)}$$